3.1.38 \(\int \frac {\coth ^3(x)}{(a+b \coth ^2(x))^{3/2}} \, dx\) [38]

Optimal. Leaf size=52 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \coth ^2(x)}}{\sqrt {a+b}}\right )}{(a+b)^{3/2}}+\frac {a}{b (a+b) \sqrt {a+b \coth ^2(x)}} \]

[Out]

arctanh((a+b*coth(x)^2)^(1/2)/(a+b)^(1/2))/(a+b)^(3/2)+a/b/(a+b)/(a+b*coth(x)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 52, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.294, Rules used = {3751, 457, 79, 65, 214} \begin {gather*} \frac {a}{b (a+b) \sqrt {a+b \coth ^2(x)}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \coth ^2(x)}}{\sqrt {a+b}}\right )}{(a+b)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Coth[x]^3/(a + b*Coth[x]^2)^(3/2),x]

[Out]

ArcTanh[Sqrt[a + b*Coth[x]^2]/Sqrt[a + b]]/(a + b)^(3/2) + a/(b*(a + b)*Sqrt[a + b*Coth[x]^2])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 79

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || L
tQ[p, n]))))

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 3751

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff/f), Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2
 + ff^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps

\begin {align*} \int \frac {\coth ^3(x)}{\left (a+b \coth ^2(x)\right )^{3/2}} \, dx &=\text {Subst}\left (\int \frac {x^3}{\left (1-x^2\right ) \left (a+b x^2\right )^{3/2}} \, dx,x,\coth (x)\right )\\ &=\frac {1}{2} \text {Subst}\left (\int \frac {x}{(1-x) (a+b x)^{3/2}} \, dx,x,\coth ^2(x)\right )\\ &=\frac {a}{b (a+b) \sqrt {a+b \coth ^2(x)}}+\frac {\text {Subst}\left (\int \frac {1}{(1-x) \sqrt {a+b x}} \, dx,x,\coth ^2(x)\right )}{2 (a+b)}\\ &=\frac {a}{b (a+b) \sqrt {a+b \coth ^2(x)}}+\frac {\text {Subst}\left (\int \frac {1}{1+\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \coth ^2(x)}\right )}{b (a+b)}\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \coth ^2(x)}}{\sqrt {a+b}}\right )}{(a+b)^{3/2}}+\frac {a}{b (a+b) \sqrt {a+b \coth ^2(x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.10, size = 52, normalized size = 1.00 \begin {gather*} \frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \coth ^2(x)}}{\sqrt {a+b}}\right )}{(a+b)^{3/2}}+\frac {a}{b (a+b) \sqrt {a+b \coth ^2(x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Coth[x]^3/(a + b*Coth[x]^2)^(3/2),x]

[Out]

ArcTanh[Sqrt[a + b*Coth[x]^2]/Sqrt[a + b]]/(a + b)^(3/2) + a/(b*(a + b)*Sqrt[a + b*Coth[x]^2])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(286\) vs. \(2(44)=88\).
time = 0.70, size = 287, normalized size = 5.52

method result size
derivativedivides \(\frac {1}{b \sqrt {a +b \left (\coth ^{2}\left (x \right )\right )}}-\frac {1}{2 \left (a +b \right ) \sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}}-\frac {b \left (2 b \left (1+\coth \left (x \right )\right )-2 b \right )}{\left (a +b \right ) \left (4 b \left (a +b \right )-4 b^{2}\right ) \sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\coth \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}}{1+\coth \left (x \right )}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}-\frac {1}{2 \left (a +b \right ) \sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}}+\frac {b \left (2 b \left (\coth \left (x \right )-1\right )+2 b \right )}{\left (a +b \right ) \left (4 b \left (a +b \right )-4 b^{2}\right ) \sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b +2 b \left (\coth \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}}{\coth \left (x \right )-1}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}\) \(287\)
default \(\frac {1}{b \sqrt {a +b \left (\coth ^{2}\left (x \right )\right )}}-\frac {1}{2 \left (a +b \right ) \sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}}-\frac {b \left (2 b \left (1+\coth \left (x \right )\right )-2 b \right )}{\left (a +b \right ) \left (4 b \left (a +b \right )-4 b^{2}\right ) \sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\coth \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\coth \left (x \right )\right )^{2}-2 b \left (1+\coth \left (x \right )\right )+a +b}}{1+\coth \left (x \right )}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}-\frac {1}{2 \left (a +b \right ) \sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}}+\frac {b \left (2 b \left (\coth \left (x \right )-1\right )+2 b \right )}{\left (a +b \right ) \left (4 b \left (a +b \right )-4 b^{2}\right ) \sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b +2 b \left (\coth \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\coth \left (x \right )-1\right )^{2}+2 b \left (\coth \left (x \right )-1\right )+a +b}}{\coth \left (x \right )-1}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}\) \(287\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(x)^3/(a+b*coth(x)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/b/(a+b*coth(x)^2)^(1/2)-1/2/(a+b)/(b*(1+coth(x))^2-2*b*(1+coth(x))+a+b)^(1/2)-b/(a+b)*(2*b*(1+coth(x))-2*b)/
(4*b*(a+b)-4*b^2)/(b*(1+coth(x))^2-2*b*(1+coth(x))+a+b)^(1/2)+1/2/(a+b)^(3/2)*ln((2*a+2*b-2*b*(1+coth(x))+2*(a
+b)^(1/2)*(b*(1+coth(x))^2-2*b*(1+coth(x))+a+b)^(1/2))/(1+coth(x)))-1/2/(a+b)/(b*(coth(x)-1)^2+2*b*(coth(x)-1)
+a+b)^(1/2)+b/(a+b)*(2*b*(coth(x)-1)+2*b)/(4*b*(a+b)-4*b^2)/(b*(coth(x)-1)^2+2*b*(coth(x)-1)+a+b)^(1/2)+1/2/(a
+b)^(3/2)*ln((2*a+2*b+2*b*(coth(x)-1)+2*(a+b)^(1/2)*(b*(coth(x)-1)^2+2*b*(coth(x)-1)+a+b)^(1/2))/(coth(x)-1))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)^3/(a+b*coth(x)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(coth(x)^3/(b*coth(x)^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 990 vs. \(2 (44) = 88\).
time = 0.47, size = 2541, normalized size = 48.87 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)^3/(a+b*coth(x)^2)^(3/2),x, algorithm="fricas")

[Out]

[1/4*(((a*b + b^2)*cosh(x)^4 + 4*(a*b + b^2)*cosh(x)*sinh(x)^3 + (a*b + b^2)*sinh(x)^4 - 2*(a*b - b^2)*cosh(x)
^2 + 2*(3*(a*b + b^2)*cosh(x)^2 - a*b + b^2)*sinh(x)^2 + a*b + b^2 + 4*((a*b + b^2)*cosh(x)^3 - (a*b - b^2)*co
sh(x))*sinh(x))*sqrt(a + b)*log(-((a^3 + a^2*b)*cosh(x)^8 + 8*(a^3 + a^2*b)*cosh(x)*sinh(x)^7 + (a^3 + a^2*b)*
sinh(x)^8 - 2*(2*a^3 + a^2*b)*cosh(x)^6 - 2*(2*a^3 + a^2*b - 14*(a^3 + a^2*b)*cosh(x)^2)*sinh(x)^6 + 4*(14*(a^
3 + a^2*b)*cosh(x)^3 - 3*(2*a^3 + a^2*b)*cosh(x))*sinh(x)^5 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^4 + (70*
(a^3 + a^2*b)*cosh(x)^4 + 6*a^3 + 4*a^2*b - a*b^2 + b^3 - 30*(2*a^3 + a^2*b)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a^3
 + a^2*b)*cosh(x)^5 - 10*(2*a^3 + a^2*b)*cosh(x)^3 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x))*sinh(x)^3 + a^3
+ 3*a^2*b + 3*a*b^2 + b^3 - 2*(2*a^3 + 3*a^2*b - b^3)*cosh(x)^2 + 2*(14*(a^3 + a^2*b)*cosh(x)^6 - 15*(2*a^3 +
a^2*b)*cosh(x)^4 - 2*a^3 - 3*a^2*b + b^3 + 3*(6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*(a
^2*cosh(x)^6 + 6*a^2*cosh(x)*sinh(x)^5 + a^2*sinh(x)^6 - 3*a^2*cosh(x)^4 + 3*(5*a^2*cosh(x)^2 - a^2)*sinh(x)^4
 + 4*(5*a^2*cosh(x)^3 - 3*a^2*cosh(x))*sinh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x)^2 + (15*a^2*cosh(x)^4 - 18*a^
2*cosh(x)^2 + 3*a^2 + 2*a*b - b^2)*sinh(x)^2 - a^2 - 2*a*b - b^2 + 2*(3*a^2*cosh(x)^5 - 6*a^2*cosh(x)^3 + (3*a
^2 + 2*a*b - b^2)*cosh(x))*sinh(x))*sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 - a + b)/(cosh(x)^
2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(2*(a^3 + a^2*b)*cosh(x)^7 - 3*(2*a^3 + a^2*b)*cosh(x)^5 + (6*a^3 + 4*
a^2*b - a*b^2 + b^3)*cosh(x)^3 - (2*a^3 + 3*a^2*b - b^3)*cosh(x))*sinh(x))/(cosh(x)^6 + 6*cosh(x)^5*sinh(x) +
15*cosh(x)^4*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(x)^2*sinh(x)^4 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6)) +
 ((a*b + b^2)*cosh(x)^4 + 4*(a*b + b^2)*cosh(x)*sinh(x)^3 + (a*b + b^2)*sinh(x)^4 - 2*(a*b - b^2)*cosh(x)^2 +
2*(3*(a*b + b^2)*cosh(x)^2 - a*b + b^2)*sinh(x)^2 + a*b + b^2 + 4*((a*b + b^2)*cosh(x)^3 - (a*b - b^2)*cosh(x)
)*sinh(x))*sqrt(a + b)*log(((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 + 2*b*cosh(x)^
2 + 2*(3*(a + b)*cosh(x)^2 + b)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 + 1)*sqrt(a + b
)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 - a + b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*((a +
b)*cosh(x)^3 + b*cosh(x))*sinh(x) + a + b)/(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*sqrt(2)*((a^2 + a*
b)*cosh(x)^2 + 2*(a^2 + a*b)*cosh(x)*sinh(x) + (a^2 + a*b)*sinh(x)^2 - a^2 - a*b)*sqrt(((a + b)*cosh(x)^2 + (a
 + b)*sinh(x)^2 - a + b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/((a^3*b + 3*a^2*b^2 + 3*a*b^3 + b^4)*co
sh(x)^4 + 4*(a^3*b + 3*a^2*b^2 + 3*a*b^3 + b^4)*cosh(x)*sinh(x)^3 + (a^3*b + 3*a^2*b^2 + 3*a*b^3 + b^4)*sinh(x
)^4 + a^3*b + 3*a^2*b^2 + 3*a*b^3 + b^4 - 2*(a^3*b + a^2*b^2 - a*b^3 - b^4)*cosh(x)^2 - 2*(a^3*b + a^2*b^2 - a
*b^3 - b^4 - 3*(a^3*b + 3*a^2*b^2 + 3*a*b^3 + b^4)*cosh(x)^2)*sinh(x)^2 + 4*((a^3*b + 3*a^2*b^2 + 3*a*b^3 + b^
4)*cosh(x)^3 - (a^3*b + a^2*b^2 - a*b^3 - b^4)*cosh(x))*sinh(x)), -1/2*(((a*b + b^2)*cosh(x)^4 + 4*(a*b + b^2)
*cosh(x)*sinh(x)^3 + (a*b + b^2)*sinh(x)^4 - 2*(a*b - b^2)*cosh(x)^2 + 2*(3*(a*b + b^2)*cosh(x)^2 - a*b + b^2)
*sinh(x)^2 + a*b + b^2 + 4*((a*b + b^2)*cosh(x)^3 - (a*b - b^2)*cosh(x))*sinh(x))*sqrt(-a - b)*arctan(sqrt(2)*
(a*cosh(x)^2 + 2*a*cosh(x)*sinh(x) + a*sinh(x)^2 - a - b)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(
x)^2 - a + b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a^2 + a*b)*cosh(x)^4 + 4*(a^2 + a*b)*cosh(x)*sinh
(x)^3 + (a^2 + a*b)*sinh(x)^4 - (2*a^2 + a*b - b^2)*cosh(x)^2 + (6*(a^2 + a*b)*cosh(x)^2 - 2*a^2 - a*b + b^2)*
sinh(x)^2 + a^2 + 2*a*b + b^2 + 2*(2*(a^2 + a*b)*cosh(x)^3 - (2*a^2 + a*b - b^2)*cosh(x))*sinh(x))) + ((a*b +
b^2)*cosh(x)^4 + 4*(a*b + b^2)*cosh(x)*sinh(x)^3 + (a*b + b^2)*sinh(x)^4 - 2*(a*b - b^2)*cosh(x)^2 + 2*(3*(a*b
 + b^2)*cosh(x)^2 - a*b + b^2)*sinh(x)^2 + a*b + b^2 + 4*((a*b + b^2)*cosh(x)^3 - (a*b - b^2)*cosh(x))*sinh(x)
)*sqrt(-a - b)*arctan(sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 + 1)*sqrt(-a - b)*sqrt(((a + b)*cosh(
x)^2 + (a + b)*sinh(x)^2 - a + b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a + b)*cosh(x)^4 + 4*(a + b)*
cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 - 2*(a - b)*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 - a + b)*sinh(x)^2 + 4*((
a + b)*cosh(x)^3 - (a - b)*cosh(x))*sinh(x) + a + b)) - 2*sqrt(2)*((a^2 + a*b)*cosh(x)^2 + 2*(a^2 + a*b)*cosh(
x)*sinh(x) + (a^2 + a*b)*sinh(x)^2 - a^2 - a*b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 - a + b)/(cosh(x)^
2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/((a^3*b + 3*a^2*b^2 + 3*a*b^3 + b^4)*cosh(x)^4 + 4*(a^3*b + 3*a^2*b^2 + 3
*a*b^3 + b^4)*cosh(x)*sinh(x)^3 + (a^3*b + 3*a^2*b^2 + 3*a*b^3 + b^4)*sinh(x)^4 + a^3*b + 3*a^2*b^2 + 3*a*b^3
+ b^4 - 2*(a^3*b + a^2*b^2 - a*b^3 - b^4)*cosh(x)^2 - 2*(a^3*b + a^2*b^2 - a*b^3 - b^4 - 3*(a^3*b + 3*a^2*b^2
+ 3*a*b^3 + b^4)*cosh(x)^2)*sinh(x)^2 + 4*((a^3*b + 3*a^2*b^2 + 3*a*b^3 + b^4)*cosh(x)^3 - (a^3*b + a^2*b^2 -
a*b^3 - b^4)*cosh(x))*sinh(x))]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\coth ^{3}{\left (x \right )}}{\left (a + b \coth ^{2}{\left (x \right )}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)**3/(a+b*coth(x)**2)**(3/2),x)

[Out]

Integral(coth(x)**3/(a + b*coth(x)**2)**(3/2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(x)^3/(a+b*coth(x)^2)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(ex

________________________________________________________________________________________

Mupad [B]
time = 2.00, size = 45, normalized size = 0.87 \begin {gather*} \frac {\mathrm {atanh}\left (\frac {\sqrt {b\,{\mathrm {coth}\left (x\right )}^2+a}}{\sqrt {a+b}}\right )}{{\left (a+b\right )}^{3/2}}+\frac {a}{\left (b^2+a\,b\right )\,\sqrt {b\,{\mathrm {coth}\left (x\right )}^2+a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(x)^3/(a + b*coth(x)^2)^(3/2),x)

[Out]

atanh((a + b*coth(x)^2)^(1/2)/(a + b)^(1/2))/(a + b)^(3/2) + a/((a*b + b^2)*(a + b*coth(x)^2)^(1/2))

________________________________________________________________________________________